The Prospective Value of Space Solar Power as Renewable Energy: Implications for the Biosphere, Energy Security, and Overall Sustainable Economic Growth

Molly Macauley*, Jhih-Shyang Shih*, and Geoffrey Styles**

NSF/NASA/EPRI Program

** Resources for the Future

** independent energy consultant

Ohio Aerospace Institute

September 10, 2002

Approach

Theoretical Framework

Measure of expected societal benefits from innovation in electric power generation

External effects: biosphere and energy security/reliability

Use of index, counterfactual Adoption rate

Uncertainty (data forecasts)

Uncertainty (data, forecasts)
Discount rate

Our Application

Electricity generation technologies:

- -- Space solar power
- -- Terr'l renewable (PV, solar thermal, biomass, wind, geothermal)
- --Fossil (Combined cycle gas turbine -- conventional and advanced designs)

Geographic/market regions

Weibull ("fast," "slow") for additions to capacity

Time period: 2000-2020

Using the index to estimate the present value of consumer benefits

Interpretation of the index: "how much better off are we (that is, society in general) as a result of investment in new technology, taking into account the alternative (conventional technology) and differences in the external (or social) benefits* and costs between the new and conventional technologies?"

* Biosphere and energy security/reliability effects

Relationship between expenditures, cost index

Derived demand for new energy technologies: illustration of surplus change with external costs

Derivation of estimating relationships

$$C^{*dt} = \underbrace{E^{*}(u^{dt}, P^{dt}, W^{dt})}_{E^{*}(u^{dt}, P^{I}, W^{I})}$$

$$= \underbrace{E^{*}(u^{I}, P^{dt}, W^{dt})}_{E^{*}(u^{I}, P^{I}, W^{I})}$$

$$= \underbrace{E^{*}(u^{I}, P^{I}, W^{I})}_{I/2} \ln (C^{*dt} \times C^{*I}) = \frac{I}{2} (s^{dt} + s^{I}) \ln (W^{dt}/W^{I})$$
(2)
$$= \underbrace{(Bresnahan, AER 1986)}_{W^{I}}$$

$$= \rho W^{I} + (I - \rho) W^{dt}$$
(3)

Model Framework

• Triangular and normal distributions combined with Monte Carlo draws characterize uncertainty.

Weibull Adoption Rate Curves

$$F(t) = 1 - \exp(-\lambda t^{\gamma})$$

Discounted incremental net benefits from 2000 to 2020 for Wind 6 from scenario 1 for CNV

The present value of benefits from 2000 to 2020 for Wind Class 6 from scenario 1 for CNV

SCENARIO 1: Weibull: .1, 3.5

Externalities: Carbon Water

Base: EIA CCGT Growth

Discounted Present Value, 2000-2020, \$ 1999 billions

Defending Technology	Conventional CCGT	Advanced CCGT	
Innovating Technology	(5%, Median, 95%)	(5%, Median, 95%)	
	CNV		
Photovoltaics	(-13.6, -10.8, -8.04)	(-13.7, -10.9, -8.08)	
Solar Thermal	(-7.02, -5.38, -3.86)	(-7.17, -5.57, -3.96)	
Geothermal	(2.62, 3.47, 4.45)	(2.51, 3.31, 4.26)	
Wind Class 4	(2.10, 2.90, 3.77)	(2.00, 2.73, 3.61)	
Wind Class 6	(3.50, 4.60 ,5.80)	(3.35, 4.44, 5.59)	
Biomass	(-5.37, -3.99, -2.74)	(-5.46, -4.17, -2.88)	
	MAPP		
Photovoltaics	(-6.40, -4.62, -2.92)	(-6.51, -4.70, -2.97)	
Solar Thermal	N/A	N/A	
Geothermal	N/A	N/A	
Wind Class 4	(0.79, 1.18, 1.65)	(0.74, 1.09, 1.56)	
Wind Class 6	(1.14, 1.75, 2.41)	(1.13, 1.67, 2.31)	
Biomass	(-1.61, -1.10, -0.64)	(-1.75, -1.17, -0.69)	

Largest Surplus Gains Under An Exogenously Specified "Portfolio"

Discounted Present Value 2000-2020, \$ 1999 Billions

Base: EIA CCGT Growth

	CNV (5%, Median,.95%)	MAPP (5%, Median, 95%)	Assumptions:
EQWTRP C-CCGT	(-1.54, -1.11, -0.72)	(-1.07, -0.72, -0.42)	Weibull: .05, 3.5 External Effects: Carbon, Water
A-CCGT	(-1.63, -1.20, -0.77)	(-1.13, -0.79, -0.78)	
VARWTRP C-CCGT A-CCGT	(0.41, 0.84, 1.28) (0.22, 0.68, 1.11)	(0.59, 0.92, 1.25) (0.56, 0.83, 1.17)	Weibull: .1, 3.5 External Effects: Carbon, Water

Illustrations of Expected Results

Externalities

- -- What are the effects of carbon and thermal externalities on the relative surplus associated with renewable technologies?
- -- What are the effects of including valuation of energy security/reliability (Value of Lost Load, VoLL) on the surplus?

Innovation

-- What effect does innovation among terr'l technologies have on the relative contribution of SSP?

Diversity of renewable energy resources in the United States.

Other expected results, continued

- Uncertainty
 - -- Uncertainty can lead to values +/- x % of median at the 5% and 95% confidence intervals
- Portfolio
 - -- What differences do equal and variable portfolio "weights" have on benefit measures?
- Geography
 - -- What role do natural endowments of terr'l renewable resources play in relative benefits?

Other expected results, cont'd

• Limits

- -- Data gaps (external effects) and assumptions ("GenCo"; deregulation; state/local/international policies)
- -- Gross not net of public and private investment or other expenditures to attain cost goals, adoption rates

Expected contribution

- -- Offers conceptually grounded measurement approach; alternative to data-intensive econometric models; appeal of "cost index" analogy with Consumer Price Index; tool for program managers
- -- Allows for externalities, uncertainty, policy simulation
- -- Could extend to include "green preferences" (data? Are they verified?); state, local, and other countries' energy policies
- -- Could extend to NRC-defined benefits including commercialization, knowledge, option values